题目内容
考点:相似三角形的判定与性质,正方形的性质
专题:
分析:连接AC、AF、PF、BQ,过P作PQ⊥AC于Q,根据正方形的性质求出∠BFP=∠BQP,∠FBP=∠QPB,根据全等三角形的判定推出两三角形全等,根据全等三角形的性质求出BF=PQ,根据等腰直角三角形性质即可得出答案.
解答:解:
连接AC、AF、PF、BQ,过P作PQ⊥AC于Q,
∵四边形ABCD是正方形,F为正方形APMN的中心,
∴∠ACB=∠APF=45°,∠AFP=∠ABC=90°,
∴A、F、B、P四点共圆,
∴∠ABF=∠ABF=45°,∠BFP=∠BAP,
同理∠ABP=∠AQP=90°,
∴∠ABP+∠AQP=180°,
∴∠BAP=∠BQP,
∴∠BFP=∠PQB,
∵PQ⊥AC,
∴∠QPC=∠ACB=45°,
∴∠FBP=∠QPB=90°+45°=135°,
在△FBP和△QPB中,
∴△FBP≌△QPB(AAS),
∴BF=PQ,
∵∠PQC=90°,∠ACB=∠QPC=45°,
∴PQ=
CP,
∴BF=
CP,
故答案为:BF=
CP.
连接AC、AF、PF、BQ,过P作PQ⊥AC于Q,
∵四边形ABCD是正方形,F为正方形APMN的中心,
∴∠ACB=∠APF=45°,∠AFP=∠ABC=90°,
∴A、F、B、P四点共圆,
∴∠ABF=∠ABF=45°,∠BFP=∠BAP,
同理∠ABP=∠AQP=90°,
∴∠ABP+∠AQP=180°,
∴∠BAP=∠BQP,
∴∠BFP=∠PQB,
∵PQ⊥AC,
∴∠QPC=∠ACB=45°,
∴∠FBP=∠QPB=90°+45°=135°,
在△FBP和△QPB中,
|
∴△FBP≌△QPB(AAS),
∴BF=PQ,
∵∠PQC=90°,∠ACB=∠QPC=45°,
∴PQ=
| ||
| 2 |
∴BF=
| ||
| 2 |
故答案为:BF=
| ||
| 2 |
点评:本题考查了正方形的性质,圆内接四边形的性质,全等三角形的性质和判定的应用,题目是一道综合性比较强的题目,有一定的难度.
练习册系列答案
相关题目
在平面直角坐标系中,下列坐标所对应的点位于第三象限的是( )
| A、(3,1) |
| B、(3,-1) |
| C、(-3,1) |
| D、(-3,-1) |