题目内容

11.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是(  )
A.5B.4.8C.4.6D.4.4

分析 连接CD,利用勾股定理列式求出AB,判断出四边形CFDE是矩形,根据矩形的对角线相等可得EF=CD,再根据垂线段最短可得CD⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出方程求解即可.

解答 解:如图,连接CD.
∵∠ACB=90°,AC=6,BC=8,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=10,
∵DE⊥AC,DF⊥BC,∠C=90°,
∴四边形CFDE是矩形,
∴EF=CD,
由垂线段最短可得CD⊥AB时,线段EF的值最小,
此时,S△ABC=$\frac{1}{2}$BC•AC=$\frac{1}{2}$AB•CD,
即$\frac{1}{2}$×8×6=$\frac{1}{2}$×10•CD,
解得CD=4.8,
∴EF=4.8.
故选B.

点评 本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出CD⊥AB时,线段EF的值最小是解题的关键,难点在于利用三角形的面积列出方程.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网