题目内容
17.分析 根据图形的特征设出四边形MNPQ的面积设为x,将其余八个全等的三角形面积一个设为y,从而用x,y表示出S1,S2,S3,得出答案即可.
解答 解:将四边形MNPQ的面积设为x,将其余八个全等的三角形面积一个设为y,
∵S四边形ABCD=S1,S四边形EFGH=S2,S四边形MNPQ=S3,若S1+S2+S3=10,
∴得出S1=8y+x,S2=4y+x,S3=x,
∴S1+S2+S3=3x+12y=10,故3x+12y=10,
∴x+4y=$\frac{10}{3}$
S2=x+4y=$\frac{10}{3}$.
故答案为:$\frac{10}{3}$.
点评 此题主要考查了平行四边形的性质,图形面积关系,根据已知得出用x,y表示出S1,S2,S3,再利用S1+S2+S3=10求出是解决问题的关键.
练习册系列答案
相关题目
12.已知一个二元一次方程组的解是$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$,则这个方程组是( )
| A. | $\left\{\begin{array}{l}{x+y=-3}\\{xy=-2}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+y=-3}\\{x-2y=1}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{2x=y}\\{y-x=-3}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{\frac{2}{3x}-\frac{5}{6y}=1}\\{2x+y=-4}\end{array}\right.$ |