题目内容

17.如图,有八个全等的三角形拼成一个大四边形ABCD和中间一个小四边形MNPQ,连接EF、GH得到四边形EFGH,设S四边形ABCD=S1,S四边形EFGH=S2,S四边形MNPQ=S3,若S1+S2+S3=10,则S2=$\frac{10}{3}$.

分析 根据图形的特征设出四边形MNPQ的面积设为x,将其余八个全等的三角形面积一个设为y,从而用x,y表示出S1,S2,S3,得出答案即可.

解答 解:将四边形MNPQ的面积设为x,将其余八个全等的三角形面积一个设为y,
∵S四边形ABCD=S1,S四边形EFGH=S2,S四边形MNPQ=S3,若S1+S2+S3=10,
∴得出S1=8y+x,S2=4y+x,S3=x,
∴S1+S2+S3=3x+12y=10,故3x+12y=10,
∴x+4y=$\frac{10}{3}$
S2=x+4y=$\frac{10}{3}$.
故答案为:$\frac{10}{3}$.

点评 此题主要考查了平行四边形的性质,图形面积关系,根据已知得出用x,y表示出S1,S2,S3,再利用S1+S2+S3=10求出是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网