题目内容

20.如图①,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.
(1)探究猜想:
①若∠A=20°,∠D=40°,则∠AED等于多少度?
②猜想图①中∠AED,∠EAB,∠EDC的关系,并用两种不同的方法证明你的结论.
(2)拓展应用:
如图②,射线FE与l1,l2交于分别交于点E、F,AB∥CD,a,b,c,d分别是被射线FE隔开的4个区域(不含边界,其中区域a,b位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(选择其中一种情况说明理由).

分析 (1)①延长DE交AB于F,根据平行线的性质求出∠DFA=∠D=40°,∠AED=∠A+∠DFA,代入求出即可;
②过E作EF∥AB,根据平行线的性质得出∠A=∠AEF,∠D=∠DEF,即可求出答案;
(2)根据题意画出符合的四种情况,根据图形和平行线的性质得出答案即可.

解答 (1)解:①延长DE交AB于F,如图1,
∵AB∥CD,∠D=40°,
∴∠DFA=∠D=40°,
∵∠A=20°,
∴∠AED=∠A+∠DFA=20°+40°=60°;

②∠AED=∠A+∠D,
证明:方法一、延长DE交AB于F,如图1,
∵AB∥CD,
∴∠DFA=∠D,
∴∠AED=∠A+∠DFA;
方法二、过E作EF∥AB,如图2,
∵AB∥CD,
∴AB∥EF∥CD,
∴∠A=∠AEF,∠D=∠DEF,
∴∠AED=∠AEF+∠DEF=∠A+∠D;

(2)
当P在a区域时,如图3,∠PEB=∠PFC+∠EPF;
当P点在b区域时,如图4,∠PFC=∠PEB+∠EPF;
当P点在区域c时,如图5,∠EPF+∠PEB+∠PFC=360°;
当P点在区域d时,如图6,∠EPF=∠PEB+∠PFC.
证明:图3,
∵AB∥CD,
∴∠PMB=∠PFC,
∵∠PMB=∠PEB+∠EPF,
∴∠PFC=∠PEB+∠EPF.

点评 本题考查了平行线的性质和判定,三角形外角性质的应用,能画出符合的各个情况是解此题的关键,用了分类讨论思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网