题目内容
已知线段AB=18cm,点C为直线AB上一点,且AC=10cm,又知点D为线段BC的中点,试求线段AD的长度.(先画出图形,再写出过程.否则不得分)
考点:两点间的距离
专题:
分析:根据题意画出图形,再分点C在A、B之间与点C在点A的左侧两种情况进行讨论.
解答:
解:如图1所示,
∵线段AB=18cm,AC=10cm,
∴BC=18-10=8cm,
∵点D为线段BC的中点,
∴CD=
BC=4cm,
∴AD=AC+CD=10+4=14cm;
如图2所示,
∵AB=18cm,AC=10cm,
∴BC=AC+CB=10+18=28cm,
∴CD=
BC=14cm,
∴AD=CD-AC=14-10=4cm.
综上所述,线段AD的长为14cm或4cm.
∵线段AB=18cm,AC=10cm,
∴BC=18-10=8cm,
∵点D为线段BC的中点,
∴CD=
| 1 |
| 2 |
∴AD=AC+CD=10+4=14cm;
如图2所示,
∵AB=18cm,AC=10cm,
∴BC=AC+CB=10+18=28cm,
∴CD=
| 1 |
| 2 |
∴AD=CD-AC=14-10=4cm.
综上所述,线段AD的长为14cm或4cm.
点评:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.
练习册系列答案
相关题目
有一列数a1,a2,a3,a4,…,an,从第二个数开始,每一个数都等于1与它前面那个数的差的倒数,若a1=3,则a2014为( )
| A、2014 | ||
B、
| ||
C、-
| ||
| D、3 |
| A、180° | B、200° |
| C、220° | D、270° |
| A、SSS | B、SAS |
| C、ASA | D、AAS |