题目内容

12.如图,△ABC中,BD:DC=4:9,CE:EA=4:3,求AF:FB.

分析 作DP∥AC交BE于P,DQ∥AB交FC于Q,根据平行线的性质得到PD:CE=BD:BC,DQ:BF=CD:BC,计算即可.

解答 解:作DP∥AC交BE于P,DQ∥AB交FC于Q,
∵DP∥AC,
∴PD:CE=BD:BC=4:13,
∵CE:EA=4:3,
∴PD:EA=16:39,
∵DQ∥AB,
∴DQ:BF=CD:BC=9:13,
∴DQ:AF=OD:OA=16:39,
∴AF:BF=27:16.

点评 本题考查了平行线分线段成比例定理的应用,正确作出辅助线、能正确运用定理是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网