题目内容

7.已知:如图,在△ABC中,AH⊥BC于点H,点D,E,F分别是BC,AC,AB的中点.若∠A的度数是α,则图中度数等于α的角还有4个.

分析 根据三角形的中位线平行于第三边并且可得DF∥AC,DE∥AB,然后根据平行线的性质求出∠BFD=α,∠FDE=∠BAC=α,∠DEC=∠BAC=α,根据直角三角形斜边上的中线等于斜边的一半可得AF=FH,AE=EH,再根据等边对等角可得∠AHF=∠FAH,∠AHE=∠EAH,从而求出∠FHE=∠BAC=α.

解答 解:∵D,E,F分别为BC,AC,AB的中点,
∴DF∥AC,DE∥AB,
∴∠BFD=∠BAC=α,∠FDE=∠BFD=α,
同理可得∠CED=∠CAB=α,
∵AH⊥BC,E、F分别为AC、AB的中点,
∴AF=FH,AE=EH,
∴∠AHF=∠FAH,∠AHE=∠EAH,
∴∠AHF+∠AHE=∠FAH+∠EAH,
即∠FHE=∠BAC=α,
故答案为4.

点评 本题考查了三角形的中位线平行于第三边并且等于第三边的一半的性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记性质并准确识图是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网