题目内容
如图,已知AP平分∠CAM,BP平分∠CBD,∠C=62°,∠D=30°,则∠P=________.
136°
分析:先根据三角形内角和定理得出∠P=180°-∠PBE-∠PEB,再由角平分线的性质可知∠PBE=
(180°-∠C-∠CGB),∠PEB=180°-∠D-∠DAE,由三角形外角的性质可知,∠EAG=
(180°-∠DAG)再把三式联立即可得出结论.
解答:
解:∵∠P=180°-∠PBE-∠PEB,
∠PBE=
(180°-∠C-∠CGB)①,
∠PEB=180°-∠D-∠DAE②,
∠EAG=
(180°-∠DAG)③
∴∠P=180°-∠PBE-∠PEB
=180°-
(180°-∠C-∠CGB)-∠PEB
=90°+
∠C+
∠CGB-(180°-∠D-∠DAE)
=
∠C+
∠CGB-90°+∠D+(∠DAG+
∠CAM)
=
∠C+
∠CGB-90°+∠D+(180°-∠D-∠DGA)+
(∠D+∠DGA)
=90°+
∠C+
∠D
=90°+
×62°+
×30°
=136°.
故答案为:136°.
点评:本题考查的是三角形外角的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.
分析:先根据三角形内角和定理得出∠P=180°-∠PBE-∠PEB,再由角平分线的性质可知∠PBE=
解答:
∠PBE=
∠PEB=180°-∠D-∠DAE②,
∠EAG=
∴∠P=180°-∠PBE-∠PEB
=180°-
=90°+
=
=
=90°+
=90°+
=136°.
故答案为:136°.
点评:本题考查的是三角形外角的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.
练习册系列答案
相关题目