题目内容

如图,已知AP平分∠CAM,BP平分∠CBD,∠C=62°,∠D=30°,则∠P=________.

136°
分析:先根据三角形内角和定理得出∠P=180°-∠PBE-∠PEB,再由角平分线的性质可知∠PBE=(180°-∠C-∠CGB),∠PEB=180°-∠D-∠DAE,由三角形外角的性质可知,∠EAG=(180°-∠DAG)再把三式联立即可得出结论.
解答:解:∵∠P=180°-∠PBE-∠PEB,
∠PBE=(180°-∠C-∠CGB)①,
∠PEB=180°-∠D-∠DAE②,
∠EAG=(180°-∠DAG)③
∴∠P=180°-∠PBE-∠PEB
=180°-(180°-∠C-∠CGB)-∠PEB
=90°+∠C+∠CGB-(180°-∠D-∠DAE)
=∠C+∠CGB-90°+∠D+(∠DAG+∠CAM)
=∠C+∠CGB-90°+∠D+(180°-∠D-∠DGA)+(∠D+∠DGA)
=90°+∠C+∠D
=90°+×62°+×30°
=136°.
故答案为:136°.
点评:本题考查的是三角形外角的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网