题目内容
如图,在?ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.
(1)求证:AB=CF;
(2)连接DE,若AD=2AB,求证:DE⊥AF.
如图,AB∥ED,∠B=48°,∠D=42°,BC垂直于CD吗?下面给出两种添加辅助线的方法,请选择一种,对你作出的结论加以说明.
已知抛物线.
(1)求证:无论为任何实数,抛物线与轴总有两个交点;
(2)若A、B是抛物线上的两个不同点,求抛物线的表达式和的值;
(3)若反比例函数的图象与(2)中的抛物线在第一象限内的交点的横坐标为,且满足2<<3,求k的取值范围.
如图,已知AC=FE,BC=DE,点A,D,B,F在一条直线上,要利用“SSS”证明△ABC≌△FDE,还可以添加的一个条件是( )
A. AD=FB B. DE=BD C. BF=DB D. 以上都不对
如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上。OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1,绕点B1按顺时针方向旋转 120°,此时点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处)。小慧还发现:三角形纸片在上述两次旋转的过程中,顶点O运动所形成的图形是两段圆弧,即和,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧与直线l1围成的图形面积等于扇形的面积、△AO1B1的面积和扇形B1O1O2的面积之和。
小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA边与直线l2重合,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B2处,小慧又将正方形纸片 AO1C1B1绕顶点B1按顺时针方向旋转90°,…。按上述方法经过若干次旋转后,她提出了如下问题:
问题①:若正方形纸片OABC按上述方法经过3次旋转,求顶点O经过的路程,并求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形纸片OABC按上述方法经过5次旋转,求顶点O经过的路程;
问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是?
如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最大内角等于______
如果梯子的底端离建筑物5m,那么长为13m梯子可以达到该建筑物的高度是( )
A. 12m B. 14m C. 15m D. 13m
已知为三角形的三边长,则化简________ .
如图,已知反比例函数的图象与一次函数的图象交于点A(1,4)、点B(-4,n).
(1)求和的值;
(2)求△OAB的面积;
(3)直接写出一次函数值大于反比例函数值的自变量的取值范围.