题目内容
考点:菱形的性质,翻折变换(折叠问题)
专题:
分析:根据菱形性质得出AC⊥BD,AC平分∠BAD,求出∠ABO=30°,求出AO,BO、DO,根据折叠得出EF⊥AC,EF平分AO,推出EF∥BD,推出,EF为△ABD的中位线,根据三角形中位线定理求出即可.
解答:
解:连接BD、AC,
∵四边形ABCD是菱形,
∴AC⊥BD,AC平分∠BAD,
∵∠BAD=120°,
∴∠BAC=60°,
∴∠ABO=90°-60°=30°,
∵∠AOB=90°,
∴AO=
AB=
×4=2(cm),
由勾股定理得:BO=DO=2
(cm),
∴BD=4
(cm),
∵A沿EF折叠与O重合,
∴EF⊥AC,EF平分AO,
∵AC⊥BD,
∴EF∥BD,
∴EF为△ABD的中位线,
∴EF=
BD=2
(cm),
故答案为:2
.
∵四边形ABCD是菱形,
∴AC⊥BD,AC平分∠BAD,
∵∠BAD=120°,
∴∠BAC=60°,
∴∠ABO=90°-60°=30°,
∵∠AOB=90°,
∴AO=
| 1 |
| 2 |
| 1 |
| 2 |
由勾股定理得:BO=DO=2
| 3 |
∴BD=4
| 3 |
∵A沿EF折叠与O重合,
∴EF⊥AC,EF平分AO,
∵AC⊥BD,
∴EF∥BD,
∴EF为△ABD的中位线,
∴EF=
| 1 |
| 2 |
| 3 |
故答案为:2
| 3 |
点评:本题考查了折叠性质,菱形性质,含30度角的直角三角形性质,勾股定理,平行线分线段成比例定理等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力.
练习册系列答案
相关题目