题目内容
| A、30° | B、40° |
| C、50° | D、60° |
考点:轴对称-最短路线问题
专题:
分析:根据要使△AMN的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=70°,进而得出∠MAB+∠NAD=70°,即可得出答案.
解答:解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值,作DA延长线AH,.
∵∠DAB=110°,
∴∠HAA′=70°,
∴∠AA′M+∠A″=∠HAA′=70°,
∵∠MA′A=∠MAB,∠NAD=∠A″,
∴∠MAB+∠NAD=70°,
∴∠MAN=110°-70°=40°.
故选B.
∵∠DAB=110°,
∴∠HAA′=70°,
∴∠AA′M+∠A″=∠HAA′=70°,
∵∠MA′A=∠MAB,∠NAD=∠A″,
∴∠MAB+∠NAD=70°,
∴∠MAN=110°-70°=40°.
故选B.
点评:本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.
练习册系列答案
相关题目
某商贩在一次买卖中,同时卖出两件上衣,售价都是120元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他( )
| A、赔16元 | B、不赚不赔 |
| C、赚8元 | D、赚16元 |
下列命题中,属于真命题的是( )
| A、有一边和一锐角相等的两个直角三角形全等 |
| B、若a<0,则2a<a |
| C、函数y=(k-1)x+1是一次函数 |
| D、三个角对应相等的两个三角形全等 |