题目内容
15.若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为80°或40°.分析 根据已知条件,先设出三角形的两个角,然后进行讨论,即可得出顶角的度数.
解答 解:解:在△ABC中,设∠A=x,∠B=x+30°,分情况讨论:
当∠A=∠C为底角时,2x+(x+30°)=180°,解得x=50°,顶角∠B=80°;
当∠B=∠C为底角时,2(x+30)+x=180°,解得x=40°,顶角∠A=40°.
故这个等腰三角形的顶角的度数为80°或40°.
故答案为:80°或40°.
点评 本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.
练习册系列答案
相关题目
6.若A(-5,y1),B(-2,y2),C(1,y3)为二次函数y=ax2+2ax+2016(a<0)的图象上的三点,则y1,y2,y3的大小关系是( )
| A. | y1<y3<y2 | B. | y2<y3<y1 | C. | y1<y2<y3 | D. | y3<y1<y2 |
7.估计$\frac{\sqrt{3}+3}{2}$的值在( )
| A. | 1和2之间 | B. | 2和3之间 | C. | 3和4之间 | D. | 4和5之间 |