ÌâÄ¿ÄÚÈÝ

8£®¼ÆË㣺
£¨1£©£¨x-y+$\frac{4xy}{x-y}$£©£¨x+y-$\frac{4xy}{x+y}$£©£»
£¨2£©£¨$\frac{x}{y}$-$\frac{y}{x}$£©¡Â£¨$\frac{x}{y}$+$\frac{y}{x}$-2£©¡Â£¨1+$\frac{y}{x}$£©£»
£¨3£©$\frac{2{x}^{2}-8{y}^{2}}{3y-2x}$¡Â$\frac{{x}^{2}-2xy}{4{x}^{2}-12xy+9{y}^{2}}$£®

·ÖÎö £¨1£©Ô­Ê½À¨ºÅÖÐÁ½Ïîͨ·Ö²¢ÀûÓÃͬ·Öĸ·ÖʽµÄ¼Ó¼õ·¨Ôò¼ÆË㣬Լ·Ö¼´¿ÉµÃµ½½á¹û£»
£¨2£©Ô­Ê½À¨ºÅÖÐÁ½Ïîͨ·Ö²¢ÀûÓÃͬ·Öĸ·ÖʽµÄ¼Ó¼õ·¨Ôò¼ÆË㣬ÀûÓóý·¨·¨Ôò±äÐΣ¬Ô¼·Ö¼´¿ÉµÃµ½½á¹û£»
£¨3£©Ô­Ê½ÀûÓóý·¨·¨Ôò±äÐΣ¬Ô¼·Ö¼´¿ÉµÃµ½½á¹û£®

½â´ð ½â£º£¨1£©Ô­Ê½=$\frac{£¨x-y£©^{2}+4xy}{x-y}$•$\frac{£¨x+y£©^{2}-4xy}{x+y}$=$\frac{£¨x+y£©^{2}£¨x-y£©^{2}}{£¨x+y£©£¨x-y£©}$=£¨x+y£©£¨x-y£©=x2-y2£»
£¨2£©Ô­Ê½=$\frac{{x}^{2}-{y}^{2}}{xy}$¡Â$\frac{{x}^{2}+{y}^{2}-2xy}{xy}$¡Â$\frac{x+y}{x}$=$\frac{£¨x+y£©£¨x-y£©}{xy}$•$\frac{xy}{£¨x-y£©^{2}}$•$\frac{x}{x+y}$=$\frac{x}{x-y}$£»
£¨3£©Ô­Ê½=$\frac{2£¨x+2y£©£¨x-2y£©}{-£¨2x-3y£©}$•$\frac{£¨2x-3y£©^{2}}{x£¨x-2y£©}$=-$\frac{2£¨x+2y£©£¨2x-3y£©}{x}$£®

µãÆÀ ´ËÌ⿼²éÁË·ÖʽµÄ»ìºÏÔËË㣬ÊìÁ·ÕÆÎÕÔËËã·¨ÔòÊǽⱾÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø