题目内容
如图,下列条件中不能判断的是 ( )
A. ∠3=∠4 B. ∠1=∠∠5 C. ∠1+∠4=180° D. ∠3=∠5
已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂直为D,若OB=2OA=3OD=6.
(1)求一次函数与反比例函数的解析式;
(2)求两函数图象的另一个交点坐标;
(3)直接写出不等式;kx+b≤的解集.
【答案】(1)y=﹣2x+6, ;(2)(5,﹣4);(3)﹣2≤x<0或x≥5.
【解析】试题分析:(1)先求出A、B、C坐标,再利用待定系数法确定函数解析式.
(2)两个函数的解析式作为方程组,解方程组即可解决问题.
(3)根据图象一次函数的图象在反比例函数图象的下方,即可解决问题,注意等号.
试题解析:(1)∵OB=2OA=3OD=6,∴OB=6,OA=3,OD=2,∵CD⊥OA,∴DC∥OB,∴,∴,∴CD=10,∴点C坐标(﹣2,10),B(0,6),A(3,0),∴解得: ,∴一次函数为y=﹣2x+6.
∵反比例函数经过点C(﹣2,10),∴n=﹣20,∴反比例函数解析式为;
(2)由,解得或,故另一个交点坐标为(5,﹣4);
(3)由图象可知的解集:﹣2≤x<0或x≥5.
考点:反比例函数与一次函数的交点问题.
【题型】解答题【结束】22
一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.
(1)写出按上述规定得到所有可能的两位数;
(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.
以坐标原点为圆心,作半径为2的圆,若直线与相交,则的取值范围是( )
A. B.
C. D.
的相反数是________,它的绝对值是________.
如果方程x+2y=-4,2x-y=7,y-kx+9=0有公共解,则k的解是( )
A. -3 B. 3 C. 6 D. -6
如图所示,多边形ABCDEFGH是一块从一边长为50cm的正方形材料中裁出的垫片,现测得FG = 9cm,求这块垫片的周长.
的平方根是 ____________.
正四面体各面分别标有数字1、2、3、4,正六面体各面分别标有数字1、2、3、4、5、6,同时掷这两个正多面体,并将它们朝下面上的数字相加.
(1)请用树状图或列表的方法表示可能出现的所有结果;
(2)求两个正多面体朝下面上的数字之和是3的倍数的概率.
因式分解:a3-4a=________.