题目内容

【题目】如图,把边长为2的等边三角形△ABC沿直线BC向右平移,使点B与点C重合,得到△DCE,连接BD,交AC于点F

1)证明:AC⊥BD

2)求线段BD的长。

【答案】(1)证明见解析(2)2

【解析】

1)由平移的性质可知BE=2BC=6DE=AC=3,故可得出BDDE,由∠E=ACB=60°可知ACDE,故可得出结论;

2)在RtBDE中利用勾股定理即可得出BD的长.

1)∵△DCEABC平移而成,

BE=2BC=4DE=AC=2,∠E=ACB=60°

DE=BE

BDDE

又∵∠E=ACB=60°

ACDE

BDAC

∵△ABC是等边三角形,

BF是边AC的中线,

BDACBDAC互相垂直平分;

2)∵由(1)知,ACDEBDAC

∴△BED是直角三角形,

BE=4DE=2

BD=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网