题目内容
如图,E,F在BC上,BE=CF,AB=CD,AB∥CD.求证:
(1)△ABF≌△DCE.
(2)AF∥DE.
![]()
【考点】全等三角形的判定与性质.
【专题】证明题.
【分析】(1)由等式的性质就可以得出BF=CE,由平行线的性质就可以得出∠B=∠C,根据SAS就可以得出结论;
(2)由△ABF≌△DCE就可以得出∠AFB=∠DEC就可以得出结论.
【解答】证明:∵BE=CF,
∴BE+EF=CF+EF,
∴BF=CE.
∵AB∥CD,
∴∠B=∠C
.
在△ABF和△DCE中
,
∴△ABF≌△DCE(SAS);
(2)∵△ABF≌△DCE,
∴∠AFB=∠DEC,
∴AF∥DE.
![]()
【点评】本题考查了等式的性质的运用,平行线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.
练习册系列答案
相关题目