题目内容

8.已知关于x的方程mx2-(3m-1)x+2m-2=0
(1)求证:无论m取任何实数时,方程恒有实数根;
(2)若关于x的二次函数y=mx2-(3m-1)x+2m-2的图象与x轴两个交点的横坐标均为整数,求m的整数值.

分析 (1)先分两种情况讨论,当m=0时方程的解为2和当m≠0时,△=b2-4ac=(m+1)2≥0有实数根,得出无论m取任何实数时,方程恒有实数根;
(2)根据(1)求出x的根,再根据x为整数,m为整数,求出m的值,从而求出x的值,再根据,x1≠x2,且x为正整数,即可求出m的值.

解答 解:(1)分两种情况讨论.
①当m=0时,方程为x-2=0
∴x=2,方程有实数根;                          
②当m≠0时,则一元二次方程的根的判别式
△=[-(3m-1)]2-4m(2m-2)=9m2-6m+1-8m2+8m=m2+2m+1 
=(m+1)2≥0,
不论m为何实数,△≥0成立,
∴方程恒有实数根
综合上所述可知m取任何实数,方程mx2-(3m-1)x+2m-2=0恒有实数根;

(2)设x1,x2为抛物线y=mx2-(3m-1)x+2m-2与x轴交点的横坐标.
则有 x1=$\frac{3m-1-m-1}{2m}$=1-$\frac{1}{m}$,
x2=$\frac{3m-1+m+1}{2m}$=2                  
∵x为整数,m为整数,
∴m=1,-1,
∴x1=0,2,
∵x1≠x2,且x为正整数,
∴m=1.

点评 此题主要考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根是本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网