ÌâÄ¿ÄÚÈÝ
18£®ÒÑÖª·½³Ì×é$\left\{\begin{array}{l}{2x-5y=-21}\\{4x+3y=23}\end{array}\right.$µÄ½âΪ$\left\{\begin{array}{l}{x=2}\\{y=5}\end{array}\right.$£¬Ôò·½³Ì×é$\left\{\begin{array}{l}{2£¨x-1£©-5£¨y+3£©=-21}\\{4£¨x-1£©+3£¨y+3£©=23}\end{array}\right.$µÄ½âΪ£¨¡¡¡¡£©| A£® | $\left\{\begin{array}{l}{x=2}\\{y=5}\end{array}\right.$ | B£® | $\left\{\begin{array}{l}{x=1}\\{y=8}\end{array}\right.$ | C£® | $\left\{\begin{array}{l}{x=-3}\\{y=-2}\end{array}\right.$ | D£® | $\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$ |
·ÖÎö ·ÂÕÕÒÑÖª·½³Ì×éµÄ½âÈ·¶¨³öËùÇó·½³Ì×éµÄ½â¼´¿É£®
½â´ð ½â£º¡ß·½³Ì×é$\left\{\begin{array}{l}{2x-5y=-21}\\{4x+3y=23}\end{array}\right.$µÄ½âΪ$\left\{\begin{array}{l}{x=2}\\{y=5}\end{array}\right.$£¬
¡à·½³Ì×é$\left\{\begin{array}{l}{2£¨x-1£©-5£¨y+3£©=-21}\\{4£¨x-1£©+3£¨y+3£©=23}\end{array}\right.$µÄ½âΪ$\left\{\begin{array}{l}{x-1=2}\\{y+3=5}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$£¬
¹ÊÑ¡D
µãÆÀ ´ËÌ⿼²éÁ˶þÔªÒ»´Î·½³Ì×éµÄ½â£¬·½³Ì×éµÄ½â¼´ÎªÄÜʹ·½³Ì×éÖÐÁ½·½³Ì¶¼³ÉÁ¢µÄδ֪ÊýµÄÖµ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
6£®ÒÑÖª£¬µãP£¨1-t£¬t+2£©Ëæ×ÅtµÄ±ä»¯£¬µãP²»¿ÉÄÜÔÚ£¨¡¡¡¡£©
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |
3£®£¨2017£¬Ê¯¼Òׯԣ»ªÇøÄ£Ä⣩ÔÚѧϰÈý½ÇÐÎÖÐλÏßµÄÐÔÖÊʱ£¬Ð¡ÁÁ¶Ô¿Î±¾¸ø³öµÄ½â¾ö°ì·¨½øÐÐÁËÈÏÕæË¼¿¼£º

ÇëÄãÀûÓÃСÁÁµÄ·¢ÏÖ½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©Èçͼ¢Û£¬ADÊÇ¡÷ABCµÄÖÐÏߣ¬BE½»ACÓÚµãE£¬½»ADÓÚµãF£¬ÇÒAE=EF£¬ÇóÖ¤£ºAC=BF£®

ÇëÄã°ïÖúСÁÁд³ö¸¨ÖúÏß×÷·¨²¢Íê³ÉÂÛÖ¤¹ý³Ì£º
£¨2£©½â¾öÎÊÌ⣺Èçͼ¢Ý£¬ÔÚ¡÷ABCÖУ¬¡ÏB=45¡ã£¬AB=10£¬BC=8£¬DEÊÇ¡÷ABCµÄÖÐλÏߣ®¹ýµãD£¬E×÷DF¡ÎEG£¬·Ö±ð½»BCÓÚµãF£¬G£¬¹ýµãA×÷MN¡ÎBC£¬·Ö±ðÓëFD£¬GEµÄÑÓ³¤Ïß½»ÓÚµãM£¬N£¬ÔòËıßÐÎMFGNÖܳ¤µÄ×îСֵÊÇ8+10$\sqrt{2}$£®
| ¿Î±¾Ñо¿Èý½ÇÐÎÖÐλÏßÐÔÖʵķ½·¨ ÒÑÖª£ºÈçͼ¢Ù£¬ÒÑÖª¡÷ABCÖУ¬D£¬E·Ö±ðÊÇAB£¬ACÁ½±ßÖе㣮ÇóÖ¤£ºDE¡ÎBC£¬DE=$\frac{1}{2}$BC£® Ö¤Ã÷£ºÑÓ³¤DEÖÁµãF£¬Ê¹EF=DE£¬Á¬½ÓFC£®¡Ôò¡÷ADE¡Õ¡÷CFE£®¡à¡ |
ÇëÄãÀûÓÃСÁÁµÄ·¢ÏÖ½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©Èçͼ¢Û£¬ADÊÇ¡÷ABCµÄÖÐÏߣ¬BE½»ACÓÚµãE£¬½»ADÓÚµãF£¬ÇÒAE=EF£¬ÇóÖ¤£ºAC=BF£®
ÇëÄã°ïÖúСÁÁд³ö¸¨ÖúÏß×÷·¨²¢Íê³ÉÂÛÖ¤¹ý³Ì£º
£¨2£©½â¾öÎÊÌ⣺Èçͼ¢Ý£¬ÔÚ¡÷ABCÖУ¬¡ÏB=45¡ã£¬AB=10£¬BC=8£¬DEÊÇ¡÷ABCµÄÖÐλÏߣ®¹ýµãD£¬E×÷DF¡ÎEG£¬·Ö±ð½»BCÓÚµãF£¬G£¬¹ýµãA×÷MN¡ÎBC£¬·Ö±ðÓëFD£¬GEµÄÑÓ³¤Ïß½»ÓÚµãM£¬N£¬ÔòËıßÐÎMFGNÖܳ¤µÄ×îСֵÊÇ8+10$\sqrt{2}$£®
8£®ÒÑÖªÖ±Ïßy=kx+b¾¹ýA£¨3£¬10£©£¬B£¨0£¬5£©Á½µã£¬Ôò²»µÈʽkx+b£¾0µÄ½â¼¯Îª£¨¡¡¡¡£©
| A£® | x£¾-3 | B£® | x£¼-3 | C£® | x£¾3 | D£® | x£¼3 |