题目内容

5.如图,四边形ABCD中,AB∥CD,AB=CD,E、F是对角线BD上的两点,如果再添加一个条件,使△ABE≌△CDF,则添加的条件不能是(  )
A.AE=CFB.BE=FDC.BF=DED.∠1=∠2

分析 利用平行四边形的性质以及全等三角形的判定分别分得出即可.

解答 解:∵在四边形ABCD中,AB∥CD,AB=CD,
∴四边形ABCD是平行四边形.
A、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;
B、当BE=FD,
∵平行四边形ABCD中,
∴AB=CD,∠ABE=∠CDF,
在△ABE和△CDF中,$\left\{\begin{array}{l}{AB=CD}\\{∠ABE=∠CDF}\\{∠ABE=∠CDF}\end{array}\right.$,
∴△ABE≌△CDF(SAS),故此选项错误;
C、当BF=ED,
∴BE=DF,
∵平行四边形ABCD中,
∴AB=CD,∠ABE=∠CDF,
在△ABE和△CDF中,$\left\{\begin{array}{l}{AB=CD}\\{∠ABE=∠CDF}\\{BE=DF}\end{array}\right.$,
∴△ABE≌△CDF(SAS),故此选项错误;
D、当∠1=∠2,
∵平行四边形ABCD中,
∴AB=CD,∠ABE=∠CDF,
在△ABE和△CDF中,$\left\{\begin{array}{l}{∠1=∠2}\\{AB=CD}\\{∠ABE=∠CDF}\end{array}\right.$,
∴△ABE≌△CDF(ASA),故此选项错误;
故选:A.

点评 此题主要考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网