题目内容
已知x、y满足(x+1)2+|y-2|=0,试求代数式-2xy•5x2y+(
x2y2-3y)•2x+6xy的值.
| 1 |
| 2 |
考点:整式的混合运算—化简求值,非负数的性质:绝对值,非负数的性质:偶次方
专题:
分析:先根据偶次方和绝对值求出x、y的值,再算乘法,合并同类项,最后把x、y的值代入求出即可.
解答:解:∵(x+1)2+|y-2|=0,
∴x+1=0,y-2=0,
∴x=-1,y=2,
∴-2xy•5x2y+(
x2y2-3y)•2x+6xy
=-10x3y2+x3y2-6xy+6xy
=-9x3y2
=-9×(-1)3×22
=36.
∴x+1=0,y-2=0,
∴x=-1,y=2,
∴-2xy•5x2y+(
| 1 |
| 2 |
=-10x3y2+x3y2-6xy+6xy
=-9x3y2
=-9×(-1)3×22
=36.
点评:本题考查了绝对值,偶次方,整式的混合运算的应用,主要考查学生的计算能力和化简能力.
练习册系列答案
相关题目
计算(2a)6÷(2a)3的结果是( )
| A、a3 |
| B、2a2 |
| C、4a2 |
| D、8a3 |