题目内容

1.如图①,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与点A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM,射线AE于点F、D.
(1)问题发现:直接写出∠NDE=90度;
(2)拓展探究:试判断,如图②当∠EAC为钝角时,其他条件不变,∠NDE的大小有无变化?请给出证明.
(3)如图③,若∠EAC=15°,BD=$\sqrt{2}$,直线CM与AB交于点G,其他条件不变,请直接写出AC的长.

分析 (1)根据题意证明△MAC≌△NBC即可;
(2)∠NDE的大小不变,证明△MAC≌△NBC,得到∠N=∠AMC,又∠MFD=∠NFC,所以∠MDF=∠FCN=90°,即∠NDE=90°.
(3)先证明△MAC≌△NBC,所以∠NBC=∠MAC=15°,再证明∠BDH=∠ACH=90°,∠ABD=60°,求出AB=2$\sqrt{2}$,根据AC=AB•cos45°,即可解答.

解答 解:(1)∵∠ACB=90°,∠MCN=90°,
∴∠ACM=∠BCN,
在△MAC和△NBC中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACM=∠BCN}\\{MC=NC}\end{array}\right.$,
∴△MAC≌△NBC,
∴∠NBC=∠MAC=90°,
又∵∠ACB=90°,∠EAC=90°,
∴∠NDE=90°.
故答案为:90.
(2)∠NDE的大小不变,
在△MAC和△NBC中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACM=∠BCN}\\{MC=NC}\end{array}\right.$,
∴△MAC≌△NBC,
∴∠N=∠AMC,
又∵∠MFD=∠NFC,
∴∠MDF=∠FCN=90°,
即∠NDE=90°.
(3)AC=2,
在△MAC和△NBC中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACM=∠BCN}\\{MC=NC}\end{array}\right.$,
∴△MAC≌△NBC,
∴∠NBC=∠MAC=15°,
如图③,设BC与AD交于点H,

又∵∠AHC=∠BHD,
∴∠BDH=∠ACH=90°,
∴在Rt△ABD中,∠ABD=∠ABC+∠NBC=45°+15°=60°
∵BD=$\sqrt{2}$,
∴AB=2$\sqrt{2}$,
∴AC=AB•cos45°=2.

点评 本题考查了全等三角形的性质定理与判定定理,三角形的内角和,解决本题的关键是证明△MAC≌△NBC.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网