题目内容
8.将函数y=-6x的图象向上平移2个单位,则平移后所得图象对应的函数解析式是y=-6x+2.分析 求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.
解答 解:把一次函数y=-6x,向上平移2个单位长度,得到图象解析式是y=-6x+2,
故答案是:y=-6x+2.
点评 本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.
练习册系列答案
相关题目
19.已知二次函数y=x2-(m-1)x-m,其中m>0,它的图象与x轴从左到右交于R和Q两点,与y轴交于点P,点O是坐标原点.下列判断中不正确的是( )
| A. | 方程x2-(m-1)x-m=0一定有两个不相等的实数根 | |
| B. | 点R的坐标一定是(-1,0) | |
| C. | △POQ是等腰直角三角形 | |
| D. | 该二次函数图象的对称轴在直线x=-1的左側 |
16.在平面直角坐标系中,点(a-3,2a+1)在第二象限内,则a的取值范围是( )
| A. | -3<a<$\frac{1}{2}$ | B. | $\frac{1}{2}$<a<3 | C. | -3<a<-$\frac{1}{2}$ | D. | $-\frac{1}{2}$<a<3 |
13.
数学课上探究一次函数图象与反比例函数图象有交点时的相关结论:已知直线y=kx+b与x轴、y轴分别交于点C(x,0)、D(0,y),与双曲线y=$\frac{m}{x}$交于点A(x1,y1),B(x2,y2).
(1)填空与观察:
(2)发现与验证:
数学学习小组在探究图象交点时发现以下结论:
①x1+x2=x;②y1+y2=y;③当b2+4mk≥0时,两函数图象一定会相交.
你认为以上探究的结论中正确的有①②③(填序号),请选择一个加以证明.
(3)应用与拓展:
连接AO,BO,判断△ACO与△BOD的面积有什么关系,并说明理由.
(1)填空与观察:
| 函数关系式 | C(x,0) | D(0,y) | A (x1,y1) | B(x2,y2) |
| y=2x+2,y=$\frac{4}{x}$,如图1 | (-1,0) | (0,2) | (1 , 4) | (-2,-2) |
| y=x-3,y=$\frac{10}{x}$,如图2 | (3,0) | (0,-3) | (5,2) | ( -2, -5) |
数学学习小组在探究图象交点时发现以下结论:
①x1+x2=x;②y1+y2=y;③当b2+4mk≥0时,两函数图象一定会相交.
你认为以上探究的结论中正确的有①②③(填序号),请选择一个加以证明.
(3)应用与拓展:
连接AO,BO,判断△ACO与△BOD的面积有什么关系,并说明理由.
18.
如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒$\frac{π}{2}$个单位长度,则第2017秒时,点P的坐标是( )
| A. | (2016,0) | B. | (2017,1) | C. | (2017,-1) | D. | (2018,0) |