题目内容
17.| A. | 65° | B. | 115° | C. | 125° | D. | 130° |
分析 根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.
解答 解:∵AB∥CD,
∴∠C+∠CAB=180°,
∵∠C=50°,
∴∠CAB=180°-50°=130°,
∵AE平分∠CAB,
∴∠EAB=65°,
∵AB∥CD,
∴∠EAB+∠AED=180°,
∴∠AED=180°-65°=115°,
故选B.
点评 本题考查了角平分线定义和平行线性质的应用,注意:平行线的性质有:①两条平行线被第三条直线所截,同位角相等,②两条平行线被第三条直线所截,内错角相等,③两条平行线被第三条直线所截,同旁内角互补.
练习册系列答案
相关题目
7.二元一次方程组$\left\{\begin{array}{l}{x-2y=5}\\{5x+4y=-3}\end{array}\right.$的解是( )
| A. | $\left\{\begin{array}{l}{x=-1}\\{y=-3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=-\frac{7}{5}}\\{y=1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=2}\\{y=-\frac{3}{2}}\end{array}\right.$ |
8.
国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:
请根据所给信息,解答下列问题:
(1)a=60,b=0.15,且补全频数分布直方图;
(2)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?
(3)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.
| 获奖等次 | 频数 | 频率 |
| 一等奖 | 10 | 0.05 |
| 二等奖 | 20 | 0.10 |
| 三等奖 | 30 | b |
| 优胜奖 | a | 0.30 |
| 鼓励奖 | 80 | 0.40 |
(1)a=60,b=0.15,且补全频数分布直方图;
(2)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?
(3)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.
5.解分式方程$\frac{1}{x-1}+1=0$,正确的结果是( )
| A. | x=0 | B. | x=1 | C. | x=2 | D. | 无解 |
6.如果关于x的一元二次方程x2-6x+2k=0有两个实数根,那么实数k的取值范围是( )
| A. | $k≤\frac{9}{2}$ | B. | $k<\frac{9}{2}$ | C. | $k≥\frac{9}{2}$ | D. | $k>\frac{9}{2}$ |