题目内容

8.如图,△ABC和△CDE是等腰直角三角形,∠BAC=∠CED=∠BCE=90°.点M为BC边上一点,连接EM、BD交于点N,点N恰好是BD中点,连接AN.
(1)求证:MN=EN;
(2)连接AM、AE,请探究AN与EN的位置关系与数量关系.
①写出AN与EM:位置关系AN⊥EM;数量关系AN=$\frac{1}{2}$EM;
②请证明上述结论.

分析 (1)由∠CED=∠BCE=90°,可证得BC∥DE,然后由点N恰好是BD中点,利用ASA可证得△BMN≌△DEN,继而证得结论;
(2)首先连接AM,AE,由△ABC和△CDE是等腰直角三角形,易证得△ABM≌△ACE,则可证得△AME是等腰直角三角形,继而证得AN⊥EM,AN=$\frac{1}{2}$EM.

解答 (1)证明:∵∠CED=∠BCE=90°,
∴BC∥DE,
∴∠MBN=∠EDN,
∵点N恰好是BD中点,
∴BN=DN,
在△BMN和△DEN中,
$\left\{\begin{array}{l}{∠MBN=∠EDN}\\{BN=DN}\\{∠BNM=∠DNE}\end{array}\right.$,
∴△BMN≌△DEN(ASA),
∴MN=EN;

(2)①位置关系:AN⊥EM,数量关系:AN=$\frac{1}{2}$EM.
故答案为:AN⊥EM,AN=$\frac{1}{2}$EM.

②证明:连接AM,AE,
∵△BMN≌△DEN,
∴BM=DE,
∵△ABC和△CDE是等腰直角三角形,
∴AB=AC,∠ABM=∠ACB=45°,DE=CE,
∴BM=CE,
∵∠BCE=90°,
∴∠ACE=45°,
∴∠ABM=∠ACE,
在△ABM和△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠ABM=∠ACE}\\{BM=CE}\end{array}\right.$,
∴△ABM≌△ACE(SAS),
∴AM=AE,∠BAM=∠CAE,
∴∠BAM+∠CAM=∠CAE+∠CAM,
即∠MAE=∠BAC=90°,
∵MN=EN,
∴AN⊥EM,AN=$\frac{1}{2}$EM.

点评 此题属于三角形的综合题.考查了全等三角形的判定与性质以及等腰直角三角形的判定与性质.注意准确作出辅助线是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网