题目内容
12.若等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形的底角是60°,60°或30°,30°.分析 等腰三角形一腰上的高与另一腰的夹角为30°,但没有明确此等腰三角形是锐角三角形还是钝角三角形,因此,有两种情况,需分类讨论.
解答 ![]()
解:当等腰三角形为锐角三角形时,如图1,
由已知可知,∠ABD=30°,
又∵BD⊥AC,
∴∠ADB=90°,
∴∠A=60°,
∴∠ABC=∠C=60°.
当等腰三角形为钝角三角形时,如图2,
由已知可知,∠ABD=30°,
又∵BD⊥AC,
∴∠DAB=60°,
∴∠C=∠ABC=30°.
故答案为:60°,60°或30°,30°.
点评 本题考查了等腰三角形的性质,解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.正确分类是解答本题的关键.
练习册系列答案
相关题目
7.下列计算正确的是( )
| A. | (-2a3)3=-8a6 | B. | m6÷m2=m3 | ||
| C. | x2008+x2008=2x2008 | D. | t2•t3=t6 |