题目内容
9.分析 根据角平分线的定义求出∠ABF=∠FBC,再利用∠BAC=90°,AD⊥BC于点D推出∠AFE=∠AEF,然后根据等角对的等边的性质即可得证.
解答 证明:∵BE平分∠ABC,
∴∠CBE=∠ABE,
∵∠BAC=90°,
∴∠ABE+∠AFE=90°,
∵DA⊥BC,
∴∠CBE+∠BED=90°,
∴∠AFE=∠BED,
∵∠BED=∠AEF(对顶角相等),
∴∠AFE=∠AEF,
∴AE=AF.
点评 本题考查了直角三角形的两锐角互余的性质,角平分线的定义,熟练掌握直角三角形的性质是解题的关键,是基础题,难度不大.
练习册系列答案
相关题目
17.将正偶数按下表排列:
按照上面的规律,2004应该在第251行第3列.
| 第1列 | 第2列 | 第3列 | 第4列 | 第5列 | |
| 第1行 | 2 | 4 | 6 | 8 | |
| 第2行 | 16 | 14 | 12 | 10 | |
| 第3行 | 18 | 20 | 22 | 24 | |
| … | … | … | … | … | … |