题目内容

△ABC中,射线AD平分∠BAC,AD交边BC于E点.

(1)如图1,若AB=AC,∠BAC=90°,则(  )

(2)如图2,若AB≠AC,则(1)中的结论是否仍成立?若成立,请证明;若不成立,请说明理由;

(3)如图3,若AB>AC,∠BAC=∠BDC=90°,∠ABD为锐角,DH⊥AB于H,则线段AB、AC、BH之间的数量关系是(              ),并证明.

 

 

【答案】

(1)=;(2)成立,证明见解析;(3) ,证明见解析.

【解析】

试题分析:

,平分,根据等腰三角形“三线合一”可得:.所以.

(2)求的比,由图可知.四条线段均为的两边,可用两三角形的两组边与高分别表示面积.如图,过点分别作于点于点,过点于点,由平分可得;然后根据面积公式可得:

.所以.故图(1)中的结论成立.

(3)如图,过点的延长线于点,此时易证,因为,由同角的余角相等,得.进而由可证,得;此时应考虑将等式转化为用来表示,即,;所以,移项可得.

试题解析:(1)解:∵平分

(2)图(1)中的结论成立.

证明:如图,过点分别作于点于点,过点于点

平分

根据面积公式可得

所以.故图(1)中的结论成立.

(3)证明:如图,过点的延长线于

平分

∵在

.

又∵

考点:1、角平分线的性质.2、三角形的面积公式的灵活运用.3、三角形全等的判定.4、正方形的判定及性质

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网