题目内容
已知x2-3x+1=0,求(1)x+
;(2)x5+
.
| 1 |
| x |
| 1 |
| x5 |
(1)∵x2-3x+1=0,
∴x≠0,
方程两边同时除以x,
得x-3+
=0,
∴x+
=3;
(2)∵x+
=3,
∴(x+
)2=9,(x+
)3=27,
即x2+2+
=9,x3+3x+
+
=27,
∴x2+
=7,x3+
=18,
∴(x2+
)(x3+
)=7×18,
∴x5+
+x+
=126,
∴x5+
=123.
∴x≠0,
方程两边同时除以x,
得x-3+
| 1 |
| x |
∴x+
| 1 |
| x |
(2)∵x+
| 1 |
| x |
∴(x+
| 1 |
| x |
| 1 |
| x |
即x2+2+
| 1 |
| x2 |
| 3 |
| x |
| 1 |
| x3 |
∴x2+
| 1 |
| x2 |
| 1 |
| x3 |
∴(x2+
| 1 |
| x2 |
| 1 |
| x3 |
∴x5+
| 1 |
| x5 |
| 1 |
| x |
∴x5+
| 1 |
| x5 |
练习册系列答案
相关题目