题目内容

如图,在平面直角坐标系中,抛物线与x轴交于B(-3,0)、C(1,0)两点,与y轴交于点A(0,2),抛物线的顶点为D.连接AB,点E是第二象限内的抛物线上的一动点,过点E作EP⊥BC于点P,交线段AB于点F.

(1)求此抛物线的解析式;

(2)过点E作EG⊥AB于点G,Q为线段AC的中点,当△EGF周长最大时,在 轴上找一点R,使得|RE-RQ|值最大,请求出R点的坐标及|RE-RQ|的最大值;

(3)在(2)的条件下,将△PED绕E点旋转得△ED′P′,当△AP′P是以AP为直角边的直角三角形时,求点P′的坐标.

(1);(2)E(, ),R(,0),最大值为;(3)P′(, )或(, )或(, ). 【解析】试题分析:(1)把A、B、C的坐标代入抛物线解析式,求出a、b、c的值即可得出解析式; (2)先证△EFG∽△BAO,得,所以当EF最大时△EFG周长最大,求出AB的解析式,设出点E、F的坐标,表示出EF的长,求出EF最大时E点坐标,根据中点坐标求法求出点Q坐标,表示出EQ的解析式,当E、...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网