题目内容

18.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=$\sqrt{3}$cm.

分析 根据菱形的性质得出AC⊥BD,AC平分∠BAD,求出∠ABO=30°,求出AO,BO、DO,根据折叠得出EF⊥AC,EF平分AO,推出EF∥BD,推出EF为△ABD的中位线,根据三角形中位线定理求出即可.

解答 解:如图所示:连接BD、AC.

∵四边形ABCD是菱形,
∴AC⊥BD,AC平分∠BAD,
∵∠BAD=120°,
∴∠BAC=60°,
∴∠ABO=90°-60°=30°,
∵∠AOB=90°,
∴AO=$\frac{1}{2}$AB=$\frac{1}{2}$×2=1,
由勾股定理得:BO=DO=$\sqrt{3}$,
∵A沿EF折叠与O重合,
∴EF⊥AC,EF平分AO,
∵AC⊥BD,
∴EF∥BD,
∴EF为△ABD的中位线,
∴EF=$\frac{1}{2}$BD=$\frac{1}{2}$($\sqrt{3}$+$\sqrt{3}$)=$\sqrt{3}$,
故答案为:$\sqrt{3}$.

点评 本题考查了折叠性质,菱形性质,含30度角的直角三角形性质,勾股定理,平行线分线段成比例定理等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网