题目内容

6.在△ABC中,H是高AD、BE所在直线的交点,且BH=AC,则∠ABC的度数为45°或135°.

分析 根据高的可能位置,有2种情况,如图1、图2,通过证明△HBD≌△CAD得AD=BD后求解

解答 解:有2种情况,如图,
∵BH=AC,∠BEC=∠ADC,
∠AHE=∠BHD,∠HAE+∠C=90°,
∠HAE+∠AHE=90°,∴∠C=∠AHE,
∴∠C=∠BHD,
∴△HBD≌△CAD,
∴AD=BD.
如图1时∠ABC=45°;
如图2时∠ABC=135°.
∵HE⊥AC,
∴∠C+∠EBC=90°①,
∵∠HDC=90°,
∴∠H+∠HBD=90°②,
∵∠HBD=∠EBC③,
∴由①②③可得,∠C=∠H,
∵BH=AC,∠ADC=∠BDH,
∠C=∠H,
∴△HBD≌△CAD,
∴AD=BD,
∴∠ABD=45°,
∠ABC=135°;
故答案为:45°或135°

点评 本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要考虑全面,相等两种情况.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网