题目内容

在菱形ABCD中对角线AC、BD相交于点O,AB=5AC=6,过点D作AC的平行线交BC的延长线于点E,求△BDE的面积.
考点:菱形的性质
专题:
分析:先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出△BDE是直角三角形,计算出面积即可.
解答:解:四边形ABCD是菱形,
∴AD∥BE,
∵AC∥DE,
∴四边形ACED是平行四边形,
∴AC=DE=6,
∴AO=OC=
1
2
AC=3,
在RT△BCO中,∵AB=5,
∴BO=
AB2-AO2
=4,即可得BD=8,
又∵BE=BC+CE=BC+AD=10,
∴△BDE是直角三角形,
∴S△BDE=
1
2
DE•BD=24.
点评:此题考查了菱形的性质、勾股定理的逆定理及三角形的面积,属于基础题,求出BD的长度,判断△BDE是直角三角形,是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网