题目内容

19.在平面直角坐标系中,已知A(2,-2),原点O(0,0),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有(  )
A.2个B.3个C.4个D.5个

分析 由点A的坐标可得,OA与y轴的夹角为45°,若点P在y轴上,△AOP构成的等腰三角形,应分OA是腰和是底,以及是等腰直角三角形还是普通等腰三角形来讨论.

解答 解:∵A(2,-2)
∴OA=2$\sqrt{2}$,OA与y轴的夹角为45°
①当点P在y轴的正半轴上时,OP=OA=2$\sqrt{2}$,则点P的坐标为(0,2$\sqrt{2}$);
②当△AOP为等腰直角三角形时,且OA是斜边时,OP=PA=2,则点P的坐标为(0,-2);
③当△AOP为等腰直角三角形时,且OA是直角边时,OA=PA=2$\sqrt{2}$,OP=4,则点P的坐标为(0,-4);
④当点P在y轴的负半轴上时,且OA=OP=2$\sqrt{2}$,则点P的坐标为(0,-2$\sqrt{2}$).
故选C

点评 本题考查了等腰三角形的性质,关键是根据两腰相等.注意应分四种情况讨论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网