题目内容
下列几何体的主视图既是中心对称图形又是轴对称图形的是( )
(1)如图1,等腰Rt△ABO放在平面直角坐标系中, 点A,B 的坐标分别是A(0,1),B(1,0).在x轴正半轴上取D(m,0),在AD右上方作等腰Rt△ADE,∠ADE=.
①求出E点的坐标(可用含m的代数式表示);
②证明对于任意正数m,点E都在直线上;
(2)将(1)中的两个等腰直角三角形都改为有一个角为的直角三角形,如图22-2,A(0,),B(1,0). Rt△ADE中, ∠ADE=,∠AED=. D(m,0)是x轴正半轴上任意一点,则不论m取何正数,点E都在某一条直线上,请求出这条直线的函数关系式;
(3)将(2)中Rt△AOB保持不动,取点C(2, ),在x轴正半轴上取D(m,0)(m>2), 然后在AD右上方作Rt△CDE, ∠CDE=,∠CED=.当m取不同值时,点E是否还是总在一条直线上? 若是,请求出直线对应的函数关系式,若不是,请说明理由.
若α、β是方程x2-4x-5=0的两个实数根,则α2+β2的值为( )
A.30 B.26 C.10 D.6
如图,已知A、B、C是⊙O上的三个点,∠ACB=110°,则∠AOB= .
如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是( )
已知方程组的解是,求的值.
当= 时,代数式 的值是-1.
(1)观察与发现,小明将三角形纸片△ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为AEF是等腰三角形,你同意吗?请说明理由.
(2)实践与运用:将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D′处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.
如图,正五边形ABCDE,AF∥CD交BD的延长线于点F,则∠DFA= 度。