题目内容
如图,已知A、B、C是⊙O上的三个点,∠ACB=110°,则∠AOB= .
函数中自变量x的取值范围是 .
先化简(1-)÷,并求当x满x2-6=5x时该代数式的值.
把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).
(1)、在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结论;(要有辅助线哟!)
(2)、连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;
(3)、在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的,若存在,求出此时x值;若不存在,说明理由。
先化简,再求代数式(+)÷的值,其中a=tan60°-2sin30°.
如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=( )
A.2:5:25 B.4:9:25 C.2:3:5 D.4:10:25
下列几何体的主视图既是中心对称图形又是轴对称图形的是( )
一家商店把某商品按标价的九折出售仍可获利15%,若该商品的进价是35元,若设标价为x元,则可列得方程( )
A. B.
C. D.
某中学计划购买A型和B型课桌凳共200套. 经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?
(2)、学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?