题目内容
12.已知$\frac{x+4}{x(x-2)}$=$\frac{A}{x-2}$-$\frac{B}{x}$,则常数A=3,B=1.分析 首先将原式通分,进而得出A-B=1,2B=4,求出即可.
解答 解:∵$\frac{x+4}{x(x-2)}$=$\frac{A}{x-2}$-$\frac{B}{x}$,
∴$\frac{x+4}{x(x-2)}$=$\frac{A}{x-2}$-$\frac{B}{x}$=$\frac{(A-B)x+2B}{(x-2)x}$,
∴A-B=1,2B=4,
∴A=3,B=1.
故答案为:3,1.
点评 此题主要考查了分式的加减运算,正确进行通分运算是解题关键.
练习册系列答案
相关题目
12.已知$\left\{{\begin{array}{l}{x=-1}\\{y=2}\end{array}}\right.$是方程组$\left\{{\begin{array}{l}{ax+by+6=0}\\{bx-ay+7=0}\end{array}}\right.$的解,则a、b分别为( )
| A. | $\left\{{\begin{array}{l}{a=4}\\{b=1}\end{array}}\right.$ | B. | $\left\{{\begin{array}{l}{a=-4}\\{b=-1}\end{array}}\right.$ | C. | $\left\{{\begin{array}{l}{a=-4}\\{b=1}\end{array}}\right.$ | D. | $\left\{{\begin{array}{l}{a=4}\\{b=-1}\end{array}}\right.$ |
10.若ax=6,ay=4,则a2x+y的值为( )
| A. | 104 | B. | 134 | C. | 144 | D. | 40 |