题目内容
在Rt△ABC中,∠CAB=90°,AB=AC.
(1)如图①,过点A在△ABC外作直线MN,BM⊥MN于M,CN⊥MN于N.①判断线段MN、BM、CN之间有何数量关系,并证明;
![]()
②若AM=
,BM=
,AB=
,试利用图①验证勾股定理
=
;
(2)如图②,过点A在△ABC内作直线MN,BM⊥MN于M,CN⊥MN于N,判断线段MN、BM、CN之间有何数量关系?(直接写出答案)
![]()
(1)证明见解析;(2)MN=BM-CN.
【解析】
试题分析:(1)①利用已知得出∠MAB=∠ACN,进而得出△MAB≌△NCA,进而得出BM=AN,AM=CN,即可得出线段MN、BM、CN之间的数量关系;
②利用S梯形MBCN=S△MAB+S△ABC+S△NCA=
ab+
c2+
ab,S梯形MBCN=
(BM+CN)×MN=
(a+b)2,进而得出答案;
(2)利用已知得出∠MAB=∠ACN,进而得出△MAB≌△NCA,进而得出BM=AN,AM=CN,即可得出线段MN、BM、CN之间的数量关系.
试题解析:(1)①MN=BM+CN;
理由:∵∠MAB+∠NAC=90°,∠ACN+∠NAC=90°,
∴∠MAB=∠ACN,
在△MAB和△NCA中
,
∴△MAB≌△NCA(AAS),
∴BM=AN,AM=CN,
∴MN=AM+AN=BM+CN;
②由①知△MAB≌△NCA,
∴CN=AM=a,AN=BM=b,AC=BC=c,
∴MN=a+b,
∵S梯形MBCN=S△MAB+S△ABC+S△NCA=
ab+
c2+
ab,S梯形MBCN=
(BM+CN)×MN=
(a+b)2,
∴
ab+
c2+
ab=
(a+b)2,
∴a2+b2=c2;
(2)MN=BM-CN;
理由:∵∠MAB+∠NAC=90°,∠ACN+∠NAC=90°,
∴∠MAB=∠ACN,
在△MAB和△NCA中
,
∴△MAB≌△NCA(AAS),
∴BM=AN,AM=CN,
∴MN=AN-AM=BM-CN.
考点:全等三角形的判定与性质.