题目内容
一个扇形的面积是3.14平方米,半径为2米,这个扇形周长是 .
考点:扇形面积的计算,弧长的计算
专题:
分析:先求扇形的弧长l,再利用扇形周长为:2R+l计算即可.
解答:解:设此扇形的弧长为l,
∵一个扇形的面积是3.14平方米,半径为2米,
∴
l×2=3.14,
∴l=3.14,
∴这个扇形的周长为:2R+l=2×2+3.14=7.14米.
故答案为7.14米.
∵一个扇形的面积是3.14平方米,半径为2米,
∴
| 1 |
| 2 |
∴l=3.14,
∴这个扇形的周长为:2R+l=2×2+3.14=7.14米.
故答案为7.14米.
点评:本题主要考查了弧长的计算及扇形的面积公式的应用,利用扇形的面积计算其弧长是解决本题的关键,属基础题.
练习册系列答案
相关题目
若不等式组
的解集是x>-1,则m的值是( )
|
| A、-1<m<1 | B、-1或-3 |
| C、-1 | D、-3 |