题目内容

4.若方程组$\left\{\begin{array}{l}{3x+4y=2}\\{2x-y=5}\end{array}\right.$与$\left\{\begin{array}{l}{\frac{a}{3}x-by=4}\\{ax+\frac{1}{2}by=5}\end{array}\right.$有相同的解,则a=3,b=2.

分析 先解方程组$\left\{\begin{array}{l}{3x+4y=2}\\{2x-y=5}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,再把x=2,y=-1代入$\left\{\begin{array}{l}{\frac{a}{3}x-by=4}\\{ax+\frac{1}{2}by=5}\end{array}\right.$得$\left\{\begin{array}{l}{\frac{2}{3}a+b=4}\\{2a-\frac{1}{2}b=5}\end{array}\right.$,然后解关于a、b的方程组即可.

解答 解:解方程组$\left\{\begin{array}{l}{3x+4y=2}\\{2x-y=5}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,
把x=2,y=-1代入$\left\{\begin{array}{l}{\frac{a}{3}x-by=4}\\{ax+\frac{1}{2}by=5}\end{array}\right.$得$\left\{\begin{array}{l}{\frac{2}{3}a+b=4}\\{2a-\frac{1}{2}b=5}\end{array}\right.$,
解方程组$\left\{\begin{array}{l}{\frac{2}{3}a+b=4}\\{2a-\frac{1}{2}b=5}\end{array}\right.$得$\left\{\begin{array}{l}{a=3}\\{b=2}\end{array}\right.$.
故答案为=3,2.

点评 本题考查了二元一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网