题目内容

在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为(  )

 

A.

2,22.5°

B.

3,30°

C.

3,22.5°

D.

2,30°

考点:

切线的性质;等腰直角三角形.

分析:

首先连接AO,由切线的性质,易得OD⊥AB,即可得OD是△ABC的中位线,继而求得OD的长;根据圆周角定理即可求出∠MND的度数.

解答:

解:连接OA,

∵AB与⊙O相切,

∴OD⊥AB,

∵在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,

∴AO⊥BC,

∴OD∥AC,

∵O为BC的中点,

∴OD=AC=2;

∵∠DOB=45°,

∴∠MND=∠DOB=22.5°,

故选A.

点评:

此题考查了切线的性质、圆周角定理、切线长定理以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网