题目内容

3.在一个不透明的口袋装有三个完全相同的小球,分别标号为1、2、3.求下列事件的概率:
(1)从中任取一球,小球上的数字为偶数;
(2)从中任取一球,记下数字作为点A的横坐标x,把小球放回袋中,再从中任取一球记下数字作为点A的纵坐标y,点A(x,y)在函数y=$\frac{3}{x}$的图象上.

分析 (1)由在一个不透明的口袋里装有分别标有数字1、2、3、4四个小球,小球除数字不同外,其它无任何区别,直接利用概率公式求解即可求得答案;
(2)列表得出所有等可能的情况数,找出点(x,y)落在函数y=$\frac{3}{x}$的图象上的情况数,即可求出所求的概率.

解答 解:(1)∵在一个不透明的口袋里装有分别标有数字1、2、3三个小球,小球除数字不同外,其它无任何区别,
∴从中任取一球,球上的数字为偶数的概率是:$\frac{1}{3}$;

(2)列表得:

123
1(1,1)(1,2)(1,3)
2(2,1)(2,2)(2,3)
3(3,1)(3,2)(3,3)
则点M坐标的所有可能的结果有九个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3),积为3的有2种,
所以点A(x,y)在函数y=$\frac{3}{x}$的图象上概率为:$\frac{2}{9}$.

点评 考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.正确的列表或树状图是解答本题的关键,难度不大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网