ÌâÄ¿ÄÚÈÝ
14£®·ÖÎö Ïȸù¾ÝµãPµÄ×ø±êÒÀ´ÎÇó³öA1¡¢B1¡¢A2¡¢B2¡¢A3¡¢B3¡¢A4¡¢B4µÄ×ø±ê£¬´Ó¶øÇóµÃA1B1¡¢A2B1¡¢A2B2¡¢A3B2¡¢A3B3¡¢A4B3µÄ³¤£¬ÔÙÓÉÈý½ÇÐÎÃæ»ý¹«Ê½Çó³öS1¡¢S2¡¢S3¡¢S4¡¢S5µÄÖµ£¬¼´¿ÉÖªS3=3$\sqrt{3}$S1¡¢S5=3$\sqrt{3}$S3£¬¡£¬¾Ý´Ë¹æÂɽâ´ð¼´¿É£®
½â´ð ½â£ºÈçͼ£¬![]()
µ±y=1ʱ£¬ÓÉx2=1 £¨x¡Ý0£©£¬µÃ£ºx=1£¬¼´µãA1£¨1£¬1£©£¬
ÓÉ$\frac{{x}^{2}}{3}$=1£¨x¡Ý0£©£¬µÃ£ºx=$\sqrt{3}$£¬¼´B1£¨$\sqrt{3}$£¬1£©£¬
µ±x=$\sqrt{3}$ʱ£¬y=x2=£¨$\sqrt{3}$£©2=3£¬¼´A2£¨$\sqrt{3}$£¬3£©£¬
¡àA1B1=$\sqrt{3}$-1¡¢A2B1=2£»
µ±y=3ʱ£¬ÓÉ$\frac{{x}^{2}}{3}$=3£¨x¡Ý0£©£¬µÃ£ºx=3£¬¼´B2£¨3£¬3£©£¬
µ±x=3ʱ£¬y=x2=32=9£¬¼´A3£¨3£¬9£©£¬
¡àA2B2=3-$\sqrt{3}$¡¢A3B2=6£»
µ±y=9ʱ£¬ÓÉ$\frac{{x}^{2}}{3}$=9£¨x¡Ý0£©£¬µÃ£ºx=3$\sqrt{3}$£¬¼´B3£¨3$\sqrt{3}$£¬9£©£¬
¡àA3B3=3$\sqrt{3}$-3£»
µ±x=3$\sqrt{3}$ʱ£¬y=x2=£¨3$\sqrt{3}$£©2=27£¬¼´A4£¨3$\sqrt{3}$£¬27£©£¬
¡àA4B3=18£»
µ±y=27ÊÇ£¬ÓÉ$\frac{{x}^{2}}{3}$=27£¨x¡Ý0£©£¬µÃ£ºx=9£¬¼´B4£¨9£¬27£©£¬
¡àA4B4=9-3$\sqrt{3}$£»
ÔòS1=$\frac{1}{2}$¡Á2¡Á£¨$\sqrt{3}$-1£©=$\sqrt{3}$-1£¬
S2=$\frac{1}{2}$¡Á2¡Á£¨3-$\sqrt{3}$£©=3-$\sqrt{3}$=$\sqrt{3}$£¨$\sqrt{3}$-1£©£¬
S3=$\frac{1}{2}$¡Á6¡Á£¨3-$\sqrt{3}$£©=3£¨3-$\sqrt{3}$£©=3$\sqrt{3}$£¨$\sqrt{3}$-1£©£¬
S4=$\frac{1}{2}$¡Á6¡Á£¨3$\sqrt{3}$-3£©=9£¨$\sqrt{3}$-1£©£¬
S5=$\frac{1}{2}$¡Á18¡Á£¨3$\sqrt{3}$-3£©=27£¨3$\sqrt{3}$-3£©=£¨3$\sqrt{3}$£©2¡Á£¨$\sqrt{3}$-1£©£¬
¡àS2015=$£¨3\sqrt{3}£©^{\frac{2015-1}{2}}$¡Á£¨$\sqrt{3}$-1£©=£¨3$\sqrt{3}$£©1007£¨$\sqrt{3}$-1£©£¬
S2016=$\sqrt{3}$•S2015=£¨3$\sqrt{3}$£©1007£¨$\sqrt{3}$-1£©¡Á$\sqrt{3}$=31511£¨$\sqrt{3}$-1£©£¬
¹Ê´ð°¸Îª£º31511£¨$\sqrt{3}$-1£©£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êµÄÌØÕ÷ºÍÊý×ֵı仯¹æÂÉ£¬¸ù¾ÝÅ×ÎïÏß½âÎöʽÇóµÃ¸÷µã×ø±êÊÇÇóÃæ»ýµÄ¸ù±¾£¬Áгö¸÷Èý½ÇÐεÄÃæ»ý·¢¾òÆäÖб仯¹æÂÉÊǽâÌâµÄ¹Ø¼ü£®
| A£® | $\frac{60-4}{0.8x}$=$\frac{60}{x}$+1 | B£® | $\frac{60-4}{x}$=$\frac{60}{0.8x}$+1 | C£® | $\frac{60}{0.8x}$=$\frac{60-4}{x}$+1 | D£® | $\frac{60-4}{x}$=$\frac{60}{0.8x}$-1 |