题目内容

如图,BA⊥AD,CD⊥AD,垂足分别为A、D,BE,CE分别平分∠ABC、∠BCD,交点E恰好在AD上.BC=AB+CD是否成立?请说明理由.
考点:全等三角形的判定与性质,角平分线的性质
专题:
分析:延长BE交CD的延长线于点F,首先证明CF=BC,再根据等腰三角形的性质可得BE=EF,然后证明△ABE≌△FDE,进而得到FD=AB,再利用等量代换可得BC=AB+DC.
解答:解:BC=AB+CD成立,
理由如下:
延长BE交CD的延长线于点F,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∵AB∥CD,
∴∠F=∠ABE,∠A=∠FDA,
∴∠F=∠CBE,
∴CF=BC,
∵CE平分∠BCD,
∴BE=EF(三线合一)),
在△ABE和△DFE中,
∠F=∠ABE
EB=EF
∠AEB=∠DEF

∴△ABE≌△FDE(ASA),
∴FD=AB,
∵CF=DF+CD,
∴CF=AB+CD,
∴BC=AB+CD.
点评:此题主要考查了全等三角形的判定与性质,证明三角形全等是证明线段相等的重要手段.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网