题目内容

图1和图2中,优弧所在⊙O的半径为2,AB=2.点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.

(1)点O到弦AB的距离是 ,当BP经过点O时,∠ABA′= °;

(2)当BA′与⊙O相切时,如图2,求折痕的长:

(3)若线段BA′与优弧只有一个公共点B,设∠ABP=α.确定α的取值范围.

(1)1、60.(2)2;(3)α的取值范围是0°<α<30°或60°≤α<120°.

【解析】

试题分析:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.

(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.

(3)根据点A′的位置不同,分点A′在⊙O内和⊙O外两种情况进行讨论.点A′在⊙O内时,线段BA′与优弧都只有一个公共点B,α的范围是0°<α<30°;当点A′在⊙O的外部时,从BA′与⊙O相切开始,以后线段BA′与优弧都只有一个公共点B,α的范围是60°≤α<120°.从而得到:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.

试题解析:(1)①过点O作OH⊥AB,垂足为H,连接OB,如图1①所示.

∵OH⊥AB,AB=2

∴AH=BH=

∵OB=2,

∴OH=1.

∴点O到AB的距离为1.

②当BP经过点O时,如图1②所示.

∵OH=1,OB=2,OH⊥AB,

∴sin∠OBH=

∴∠OBH=30°.

由折叠可得:∠A′BP=∠ABP=30°.

∴∠ABA′=60°.

(2)过点O作OG⊥BP,垂足为G,如图2所示.

∵BA′与⊙O相切,

∴OB⊥A′B.

∴∠OBA′=90°.

∵∠OBH=30°,

∴∠ABA′=120°.

∴∠A′BP=∠ABP=60°.

∴∠OBP=30°.

∴OG=OB=1.

∴BG=

∵OG⊥BP,

∴BG=PG=

∴BP=2

∴折痕的长为2

(3)若线段BA′与优弧只有一个公共点B,

Ⅰ.当点A′在⊙O的内部时,此时α的范围是0°<α<30°.

Ⅱ.当点A′在⊙O的外部时,此时α的范围是60°≤α<120°.

综上所述:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.

考点:圆的综合题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网