题目内容
2.(1)若点A的坐标为(0,2),∠ABO=30°,求点B的坐标.
(2)若D为OB的中点,求证:直线CD是⊙O的切线.
分析 (1)由点A的坐标可知OA的长度,根据∠ABO的度数可知,AB的长度为4,利用勾股定理即可求出OB的长度,从而求出B的坐标.
(2)连接OC、MC、证明∠OCB为直角,根据D为OB的中点,可知∠DCO=∠DOC,易知∠OCM=∠COM,所以∠MCO+∠DCO=∠MCD=90°,即可求证MC⊥CD.
解答 解:(1)∵A的坐标为(0,2)
∴OA=2,
∵∠ABO=30°,∠AOB=90°,
∴AB=2OA=4,
∴由勾股定理可知:OB=2$\sqrt{3}$,![]()
∴B(2$\sqrt{3}$,0)
(2)连接OC,MC
∵OA是⊙M的直径,
∴∠ACO=90°,
∴∠OCB=90°,
在Rt△OCB中,D为OB的中点,
∴CD=$\frac{1}{2}$OB=OD,
∴∠DCO=∠DOC,
∵MC=MO,
∴∠OCM=∠COM
∵∠MOC+∠DOC=∠AOB=90°,
∴∠MCO+∠DCO=∠MCD=90°
即MC⊥CD
∴直线CD是⊙M的切线.
点评 本题考查切线的判定,解题的关键是连接MC、OC、根据直角三角形斜边上中线的性质,圆周角定理,等腰三角形的性质求出MC⊥CD,本题属于中等题型.
练习册系列答案
相关题目
17.某人沿斜坡坡度i=1:2的斜坡向上前进了6米,则他上升的高度为( )
| A. | 3米 | B. | $\frac{6\sqrt{5}}{5}$米 | C. | 2$\sqrt{3}$米 | D. | $\frac{12\sqrt{5}}{5}$米 |
7.若二次函数的解析式为y=2x2-4x+3,则其函数图象与x轴交点的情况是( )
| A. | 没有交点 | B. | 有一个交点 | C. | 有两个交点 | D. | 以上都不对 |
14.-5的绝对值是( )
| A. | -$\frac{1}{5}$ | B. | 5 | C. | -5 | D. | ±5 |
11.
在平面直角坐标系中直线y=x+2与反比例函数 y=-$\frac{k}{x}$的图象有唯一公共点,若直线y=x+m与反比例函数y=-$\frac{k}{x}$的图象有2个公共点,则m的取值范围是( )
| A. | m>2 | B. | -2<m<2 | C. | m<-2 | D. | m>2或m<-2 |