题目内容

16.已知:如图,在△ABC中,AB=AC,点D、E、F分别在边BC、AC、AB上,且有BF=CD,BD=CE.
(1)求证:△BDF≌△CED;
(2)若设∠FDE=α,则用α表示∠A.

分析 首先证明∠B=∠C,然后再利用SAS定理判定△BDF≌△CED即可,再利用全等三角形的性质解答即可.

解答 证明:(1)∵AB=AC,
∴∠B=∠C,
在△BDF与△CED中,
$\left\{\begin{array}{l}{BF=CD}\\{∠B=∠C}\\{BD=CE}\end{array}\right.$,
∴△BDF≌△CED;
(2)∵△BDF≌△CED,
∴∠BFD=∠CDE,
∵∠FDE+∠CDE=∠B+∠BFD,
∴∠B=∠FDE=α,
∴∠A=180°-2∠B=180°-2α.

点评 此题主要考查了三角形全等的判定,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网