题目内容


如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EB,GD.

(1)求证:EB=GD;

(2)若∠DAB=60°,AB=2,AG=,求GD的长.


              (1)证明:∵菱形AEFG∽菱形ABCD,

∴∠EAG=∠BAD,

∴∠EAG+∠GAB=∠BAD+∠GAB,

∴∠EAB=∠GAD,

∵AE=AG,AB=AD,

∴△AEB≌△AGD,

∴EB=GD;

(2)解:连接BD交AC于点P,则BP⊥AC,

∵∠DAB=60°,

∴∠PAB=30°,

∴BP=AB=1,

AP==,AE=AG=

∴EP=2

∴EB===

∴GD=


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网