题目内容
7.解下列方程组:(1)$\left\{\begin{array}{l}{5x-2y=4}\\{2x-3y=-5}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x=\frac{2y+4}{3}}\\{y=\frac{3x-4}{3}}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{a-b+c=0}\\{4a+2b+c=3}\\{25a+5b+c=60}\end{array}\right.$.
分析 (1)利用加减消元法可得答案;
(2)利用代入消元法可得答案;
(3)利用消元法将三元一次方程组化为二元一次方程组再解.
解答 解:(1)$\left\{\begin{array}{l}{5x-2y=4①}\\{2x-3y=-5②}\end{array}\right.$,
将①×2-②×5得:
11y=33,解得:y=3,
将y=3代入①解得:x=2,
∴原方程组的解为:$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x=\frac{2y+4}{3}①}\\{y=\frac{3x-4}{3}②}\end{array}\right.$,
将①代入②得,y=$\frac{2}{3}$y,解得:y=0,
将y=0代入①得:x=$\frac{4}{3}$,
∴原方程组的解为:$\left\{\begin{array}{l}{x=\frac{4}{3}}\\{y=0}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{a-b+c=0①}\\{4a+2b+c=3②}\\{25a+5b+c=60③}\end{array}\right.$,
①×2+②得:2a+c=1,
①×5+③得:5a+c=10,
将2a+c=1式减去5a+c=10得:a=3,
将a=3代入2a+c=1得:c=-5,
将a=3,c=-5代入①得:b=-2,
∴原方程组的解为:$\left\{\begin{array}{l}{a=3}\\{b=-2}\\{c=-5}\end{array}\right.$.
点评 本题主要考查了解方程组的方法,根据情况选择合适的方法是解答此题的关键.
| A. | abc<0 | B. | a+b+c>0 | C. | a-2b+4c<0 | D. | b+2c>0 |