题目内容

3.如图,在△ABC中,点D、E分别在AB、AC上,AB=AC,BD=CE,BE与CD交于O.
求证:△ABE≌△ACD.

分析 结合已知条件和图形可以推知AE=AD,再加上条件“AB=AC”、“公共角∠A”,利用全等三角形的判定SAS证得结论即可.

解答 证明:如图,∵AB=AC,BD=CE,
∴AB-BD=AC-CE,即AD=AE.
在△ABE与△ACD中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAE=∠CAD}\\{AE=AD}\end{array}\right.$,
∴△ABE≌△ACD(SAS).

点评 本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网