题目内容
如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为 .
如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于( )
A.115° B.120° C.125° D.145°
如图,O是正方形ABCD的对角线BD上一点,⊙O与AB,BC都相切,点E,F分别在边AD,DC上,现将△DEF沿EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处,若DE=2,则正方形ABCD的边长是_________.
如图1,P(m,n)是抛物线y=x2-1上任意一点,l是过点(0,﹣2)且与x轴平行的直线,过点P作直线PH⊥l,垂足为H.
(1)填空:当m=0时,OP= ,PH= ;当m=4时,OP= ,PH= .
(2)对任意m,n,猜想OP与PH的大小关系,并证明你的猜想.
(3)连接OH,是否存在这样的点P,使得△OPH为等边三角形?如果存在,求出点P的坐标;如果不存在,请说明理由.
(4)如图2,已知线段AB=6,端点A,B在抛物线y=x2-1上滑动,求A,B两点到直线l的距离之和的最小值.
如图,已知在R△ABC中,∠B=30°,∠ACB=90°,延长CA到O,使AO=AC,以O为圆心,OA长为半径作⊙O交BA延长线于点D,连接CD.
(1)求证:CD是⊙O的切线;
(2)若OA=2,求图中阴影部分的面积.
已知⊙O的直径为8,圆心O到直线l的距离为5,直线l与⊙O的位置关系是 .
如图,将直角三角板45°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,C是优弧AB上任意一点(与A、B不重合),则∠ACB的度数是( )
A.30o B.22.5o C.90o D.15o
关于x的一元二次方程ax2+bx+=0有两个相等的实数根,则a与b的关系是 .
如图,正方形ABCD的边长为4cm,点E、F在边AD上运动,且AE=DF.CF交BD于G,BE交AG于H.
(1)求证:∠DAG=∠ABE;
(2)①求证:点H总在以AB为直径的圆弧上;
②画出点H所在的圆弧,并说明这个圆弧
的两个端点字母;
(3)直接写出线段DH长度的最小值.